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N _ . . ,‘
' In this report we will consider the separable nonlinear optimization }
problem o 7;
| A n ‘ 4
’ = ). ' ' ' 1 by
NP min f£(x) = 2331 £ (xj’ @)
A n
s.T. gi(x) - zj‘l gla(xj) =0 1i=1, el
aj £ xj = bj j = l, aAn-’ h: i
b (ne frequently employed algoritim for approximately optimizing (1) is the
“"Separable Programming" algoritim of Miller [1]. This method forms a plece-
wise linear approximation to (1) using a fixed grid of polnts for each X E
¢ o and then locally optimizes the approximate program using linear programming.

‘} . When all of the functlons f, and g, are convex functicns, then
3» the procedure can be extended to optimize over-a variable grid thus glving

f an arbitrarily accurate approximation in the viecinity of the optimal solution. "

This procedure, which we will call Grid Linearization is described in Wolfe - -
S .
v
%; [_2] and can be viewed as an extenslon of the Dantzig-Wolfe Decamposition
i ‘
- Principle for linear programs in that it uses a restricted master linear ‘ '
! , progran to optimlze over the current grid at any stage, and subprograms :

Involving the restricted master dual variables to generate new grid points

ATl Ll e B -

| which became new colums of the restricted master at the next stage. For

convex programs this prdcedure has been proved to converge in Dantzlg [3].

L s R e izt oy

The procedure 1s attractive because the restricted master program is a
'Ge:;f:éralized Upper Bounded L. P. (and hence easy to solve), while the non-
linear subproblems are convex single variable problems (also easy to solve).
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* suppose we have chosen a (temporarily fixed) g;r'id of points X, (k = 0, ceey N

In thls paper we consider the extension of the grid linearization tech-
nique to non-convex separable programs. The result is an algorithm which
canbines the grid linearization procedure with a branch and bound structure.
Restricted master linear programs are solved at each stage of' the branch and
bourd search. Nonconvex single variable subproblems generate bounds for the
branch and bound :search and also generate new grid points for refinement Qf
the linear approxmation.

Section II of this report glves a brief sketch of the grid linearization
process, primarily to introduce notation. Section III develops the algoritim
for the nonconvex case. -Section IV discusses the relation of this method

to other algorithms in the literature. Section V deals with computational

- considerations for attaining efflciency.

II. BRIEF REVIEW OF THE GRID LINEARIZATION METHOD (Convex Case)

A, Fixed Grid

We consider problem NLP (1) with I‘ - (i_=l, seey My -

J =1, «..; n) all convex functions. For each variable xj(d=l, sens n) o

J)

: With

"‘-“a’Jf-'»xJo(le‘ ber S Xy € s <xjn3=b3; . @)

Then any- x,€ [a, 5 bJ] “can be wrltten as a convex cambination of grid points.

o™ ,
%4 ='Z kmo My . o (3)




with
A, =1 ‘ (4)
.Ejk | |

B
£

Agp=0 (5)

B e

non-zero and those two have adjacent k indices, then a plecewlse Jjnearf -

" If the convex cambination is.such that for every J at most two A

“approxination to- .fj_(x J) 1s defined by

Dm0 @ a1

'and similarly for the gﬁ(xj)

Thus If we let £y, = £y(xp,) and gy = gﬁ(xjk) ’. then the © = 1
~ separable programming method defines a linear program P, whose decision ‘ §

:,mianles are the convex cambination welghts xjk :

Ajki‘jbk' e B o - (7). 1 R R
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A new grid point X,

A

An optimal solution to the linear program P, will, if the above adjacency

condition 1s satisfied, provide an optimal solution to the plecewlse linear

“approximation to NLP (1) with solution values given by (3) . If NLP is

convex, then any feasible ,PA -solution gives a feasible NLP solution and

it is well known that the optimization process will autom_atically result in '
an adjacent. solution. ‘Hence PA ef‘fic_iently approximates the solution to

NLP.

B. Grid Refinement

" When an optimal solution to P, - has been reached, a natural question' -

A

: is whether there are new grid points in the vicinity of the solution which will

Improve the plecewlse.linear approximation and hence the accuracy of the optimal -

- solution. The grid linearization process generates new grid points as follows: -~

Suppose A .is the optimal primal solution and. (n, 0) = (ul, eees Tos 01 eees on)

- the optimal dual solution to the L. P. P,\ o

X can'improveathe, PA solution only if its reduced gost

_-;in the current optimal tableau is negative. This reduced cost is

i

By =) D ey (xy) -0y (8

~ Thus the grid linearization algorithm solves the convex single variable

subproblems

min f.}(x.j) - E ﬁ?gij (x‘i)\, (9)

"

B T T e

" :




2
for each J =1, eees N With solutions £J .
If for any J we have
f - )T g. < (1
| 3,(x3? | E 18y &<og - (10)

then xjk = ﬁj "is & new grid point value for x‘j which may improve the
- PA ‘solution. If (10) is violated for all j=1, ;.;, n, then the current
- solution for P, translates via (3, into en optimal solution for NLP.

In the Grid Linearizetion algorithm thic process is applied iteratively,

- alternately optimizing PA (called the restricted master problem) and using

the subproblems (9) to generate refined grid points and hence to generate

new columns which are added to the restricted master PA ‘for the next

. iteration. It has been proved (see for example Dantzig [3]) that this
process is infinitely convergent for convex NLP. Further description of
the process and proofs of its properties can be found in Lasdon [4] and

Dantzig [3] .

III. AN ALGORITHM FOR THE NONCONVEX CASE
A. Lower Bound |
For convenience we restate the NLP problem (1)

A

@n flx) = ] £y (x,) (1)

J

S.1. gy (x) = NCREE RN

'an £x8b,  J=1, .01
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 and note that it is addititively separable in the variables x

‘In this section we make no assumptions about convexity of the problem

functions. Let

,c#{afiaJsts.bJ ,VJ}_-' REEE "(ll,)'-'

and C, [aJ , J_]..f o B I (12)

Define the Legrangian function for NILP as

.L(‘_x’“) | 2 , M) »
Z(f(x)~2ng ()) o (13)
1._1 N L
J T
"An important lower bound is given in the following Theorem:

Theorem .. Let x be any feasible solution for NLP (1) . If

Then
La)

min L, (x, , 7)< £, (x,) . (14)
xJCCJ J BRI :

The proof is a standsrd result from nonlinear duality theory and will not
be repeated here.

In particular, Theorem 1 shows that

min Lix, m) =} min LJ(xJ , ) . (15)
xeC J xJE:Clj :




ST —— -

’ M‘:‘ln.-_—.-,:

‘varisble (nonconvex) functions L

is a lower bound on the (global) optimal objective function value for
It should be emphasized that -l) this theorem is true for any NLP -

no assumptions whatever are required (in particular convexity is mot

required) . e |

2) The Lagrangian minimizetion in (15) must be a global minimization.

Since L = Z-LJ_ it suffices to be able to globally minimize the single

3 .

'.3) The bound is tight for well behaved convex programs in the sense

.that when T “is dual optimal, '(lh)- holds with equality VS . FYor non-

convex programs, however, it is well kunown. that & "duality gap" may occur

so that there may be no feasible x and w< Q for which

min Lix , ®) =Y £(x,)
.st * , 2 J J‘

L) The Lagrangian minimization (14) is exactly the same as the

'Grid Lineerization subproblem (9) .

B. Feasibility and Optimality in NLP

Suppose we choose a grid of points iJk for esach xJ J=1l, ooy u,'
and set up the PA restricted master linear program as in (7) . If NLP

is & nonconvex program we can no longer guarantee that A feasible for

PA implies x given by (3) is feasible for NLP , nor can vwe guarantee

that optimizetion will automatically lead to an adjacent interpolation.

G & B . -
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Nevertheless 'P)‘ ‘is & linearization of NLP . In this section we explore-. "

the relation between feasibility and optimality forb. JE’A and feasibility and

‘optimality for NLP..

[

Theorem 2 Let A be primal optimal and (7 , d) Dbe dual optimal for the

components 'x, = ) A,, X,. asin (3) . Let x (globally) solve
o g kT S | B

Cmin L{x ., w) .
xeC :

If a) flx <2

b) gi(x*)so Vi=1, ..., m

e L(f,n)zzn o
J=1

Then x" solves NLP (globally).

Proof at optimality for PA wve have equal primal UL.P and dual L.P.

objective function values,

. linear program P, (7) with objective function velue. 2 . .Let. x* hnave

(16)

C(17)

(18)

(19)




i
’:‘.:-; i
|
¥
'yf
A
g :

: oo L R
A =7 = g, : - (20)
LI A flag) = 2= Qg 9 o
J:k SRR v : :
writing the dual to PA shows that dual feasibility requires
mso0 &)

"Thus by Theorem 1, (16) gives

CLx, 1) £ min{£(x) | x feasivle for NLP'} - .  (22)

combining (17), (19), (20), (22) with feasibility of x™ in NLP gives

z=] 7y L(£, 7) £ min{ £(x) | x feasible for NIP} = £(x*) < 2 (23)
J v SRR :

Thus all the above quantities are equal and x* solves NLP . QED .

Theorem 2 gives conditions which are sufficient for optimality in

NLP, These conditions are not, however, necessary. In particular they

will fail to hold for any aonconvex NLP which has a duality gap. The

primary velue of the theorem is that it suggests an algorithm for getting
closer to a solution. When condition c¢) is not satisfied, then some-

~

xJ, is a new grid polint which improves the approximation of PA “to NLP,

while if a)or b) is violated, then the problem is nonconvex in the

S v il d i Sl = e s N TR EEL L L R oA T A EMR TR % 2o PTG, C R I PRIt e .

WP

A AR SR A i i
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vicinity of x*

and we must resort to branch srd bound. These ideas
will be made precise in sectisn III-C.

Theorer 2 required that PA possess an cptimal solution, but it is
- also possible that PA mey be infeasible. The following 2 theorems

explore this situatioq and its implicetions for the original problem NLP.

Theorem 3 If P, is infeasible, then the dual to P, is unbounded.

A A

Proof The duslity theorem of Linear Programming implies that the dual

to PA is either unboundeg.or infeasible, but =0, GJ = min f(xJk)

is a feasible solution to the duai. Hence\it is unbounded. QED .

Theorem 4 Suppose ' P, is infeasille and (#, o) + 6(w*,0') (8 20)
- describes & dual feasible ray along which the dual to P, becomes

' unbounded. ~Suppose X solves the Lagrangian minimization

- min £(x) -

R B

i -

o oapd xﬁ‘ solves. the related minimization

win =Yg lxe (25)
fxeg,'.g Fl‘ gi;x S o 2
- If  :A.'i   .7 ) o £(K) - =)o, - - o (26)

e b sereemann




g Vot i : IR P S RARLIIR -

11

1 1y o 1 .
and | - g m.tg ()= § q, (27)

N

. then NLP is infeasible.

Proof By (2L), (25), (26), and (27) we have, for any xeC , and for

any 62 0

5 R NR AR 8RR e LSS SR R D, R

b | £) -] im v on ) g ()= BEC)
- i | | -'

ﬁg{f(x) - g (n, f’eﬂi‘) gi.(xn)}z

{222 f$X)f-\§ ﬂi.gi(x)}'+ 9}:222 - g ﬂil 8i(x)}‘z

D) (QJ + ﬁcJ‘) .

3 ‘ A A . . 3
Thus for any gridpoints xjk-e CJ which we might choose, the resulting

P, ‘still has (m o) + 6(n' , ¢!) as a dual feasible ray along which the

-
SA

dusl objective function is unbounded, and hence this PA is infeasible.
But if xeC is feasible for NLP?, then choosing its components xJ > be 3

geid polnts must glve & feasible PA . Hence NLP is also infeasible. QED.
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C. The Algorithm

The algorithm proposed in this section is & branch and bound

method. Branching is done by dividing the interval CJ = [aJ » bd] for  &

some variable xJ into two subintervals. At each stage t of the search :

a linearized problem PAt over some subintervals C t is solved.

J

i Lagrangian minimizations (14) then provide 1) an optimality test,

2) an infeasibility test, 3) (perhaps) . new grid points for incorporation

into ,th» as well as U4) a new lower bound on the optimal value of NIP

restricted to Xy € CJt . The detailed description of the algorithm follows:

Step 1 Initialization | !

o o e e iy $

For each J =1, ..., n° choose an initial grid as xdo = a.J s
%y = bj . Let -th with t = 1(= subproblem counter) be the P, progran

corresponding to this initial grid. Let'_cdt = la; . b,] . Let s cw

be the current largest lower bound for PAt-. Let F% = 4o be the value

of f(x) for the best incumbent feasible solution to NLP found so far.

Place ka on & list of subproblems and go to step 2.

Step 2 Linear Program

If the list of subproblems is emyty, stop. The incumbent solution ls

global optimal. Otherwise select from the list of subproblems the problem




- - - - e ——— e — —_— - = - = -
e —————— - - - -~ v

{ B, A--.m..mm e e e e , .- .,,.*.‘,h..;.w.»-\... - . -
} y
F

P

kt with the smallest lower bound Lt

J:“

- Solve this linear progranm P)‘t yielding optimal value Z with

-optimal primal variables - A and optimal dual variables T , O .

k! S i Wil

{1r th is infeasible the solution yields a dual feasible ray

(m,0) +8(m ,ol) : | (29)

along waich the dual is unbounded]

Go to step 3.

Step 3 lagrangian Minimization

Solve the n ‘single variable problems Lﬂ (x » ™) giving ‘§

JeCJ g

- solutions £J . p
@

. : "-[If,ka,._uas infeasible also solve ~ min - Zni‘ giJ(xJ) ‘giving

JECJ i

. ' ~ solutions xi L)

T Sl B e

| Compute B J L, (x, , 7)., ,%
| | AL

B ¥ T D s i i R ]
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- For each J =1, ..., n, if L

14

If B> ¥°

then irmediately fathom th and go to step 2.
If F° > B > L% then increase the value of the bownd for P.° to .

=3 and go to step 4 . Otherwise go to step L without changing the bound.

Step 4 New Grid Points

J(ﬁJ R 'n')'<“c7'j thgn incorporate ij as a

nev gridpoint for ‘xJ "in the subproblem 'Pkt . Place the new PAt sub-

problem on the list and go to step 2. Otherwise go to step 5.

[For an infeasible PAt , if all 'LJ(J?J , ™20, and if

1 t

~ Zni?:gij(xlj) .< odl then incorporate xJ - &s a new grid point for 'PA

and go to Step 2, ‘ .

Ireil - m'e (x)=0," also, then fathon P,° since (by Theorem 1)

the corresponding NLP subproblem is infeasible.]

Step 5 Optimality Test

Coupute x" from A using (3) . 1If gi(x') £0, i=1,...,m, and

2(x*)< F° then replace F°. with £(x*) and let x* be the new incumbent

solution.

Ir a) fx" <z

and b.) g (x")£0 i=1,..,m then by Theorem 2) x"* is global e
optimal for the VHLP subproblem over xeCt + Go to Step <.

If a) or b) is violated go to step 6. |




: Let" I_={_i | gi(x.*) > o} L Let -

~Let g Ye the subscript Jj =1 ,..., n which solves

et the bound for each of these problems be L

Step 6 Branch

0, = zxjk Ly and Wy = lek Eigk

w0 * -
J=lfl.n.{,n{f3_(x3 ooy gy () -y )
- iel . |

Let x; be a new grid point for Xy and define two new subproblenms,

t . # include only grid points
a.) Py” restricted to xj s xp (to the left of x;,)

(include only grid goints

t »
b.) P,” restricted to x,z x fo the right of xz)

2
. and-place both on the list.

Go to step 2 .

Iv, .RELATION TO OTHER METHQDS

The algorithm proposed in Section III is related to several other
computational methods for separable nonlineay optimization. One set of
relationships can be éeen by considering other algorithms whose fundamental

mechanism is the grid-linearization represeuntation.
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For convex programs Pl representation with fixed grid is one of the

- oldest and most used nonlinear programming techniques [1] . The general~

~ization to a variable grid for convex programs [2] is the nonlinear anslogue -

for the Dantzig Wolfe decomposition principle [5] .
Nonconvex programs with a fixed grid were considered by Falk (6] and
Beale and Tomlin [7] where branch and bound was used to force adjacent

interpolations. The current method is the natural culmination of &

-variable grid and nonconvex problems.

Another set of'relgtionships is with other existing branch and bound
methods for nonconvex optimization. A significant contribution here was
the work of Falk and Soland [8] and Soland [9] who used convex envelopes
of nonconvex functions to form & convex approximeting problem which was
then imbedded in a branch and bound structure. Our method is similar except
that the convex envelope problem is replaced by & sequence of improving

PA Jlinear approximations. The PA problems are easier to formulate and

to solve, but they lack the property of being a consistent underestimate of
the originael problem functions. As & result; the bounds for our problem
sre derived from Lagrangian duality in con*i.ast to the Felk and Soland
bounds which derive directly from the éonvex envelopes. Greenberg [10]
indicates thet Lagrangian bounds are stronger than convex envelope bounds
in some circumstances. If all the problem functions are concave, then

convex envelopes are the same as linear interpolations between the end-
t

‘ points of the intervals CJ . In this case our algorithm is very similar

to thet of Solend [9] , and step 4 would never occur. Another similar
branch end bound method for the concave case with linear constraints is

due to Walkup [11] .
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-V COMPUTATIONAL CONSIDERATIONS

Implementeation 6f the algorithm outlined in section III involves -

three distinct computational requirements. -

a.) Solve the linear programs _P§

, b.)Alsolve the single variable nonconvex Lagrangien minimizations

¢.) Generate and meintain the problem list required by the

Branch and Bound structure.

.In this section we discuss each of these briefly indicating possible -

chgices and tradeoffs which might influence the efficiency of the procedure.

" The linear progranms fPAF which must be solved in step 2 of the

algorithm have m + n constraints and as meny variables as there are grid

points in the subrectangle Ct . The n. convexity constraints ZA§ =1,

k

VJ can be handled implicitly by a Generalized Upper Bounding algorithm,

.s0 the effective basis size is only m . Any sparsity in the original NLP

constraints (gij(xj) 2 0) 4is inherited in the first m constraints of PAt .

Thus 'PAt is a linear program which may have substantial structure and which

should not be too difficult to solve. When new grid points are added to an

t

existing Pk the existing solution provides a natural advanced start for

the new optimization. Another possibility, when the number of grid peoints
becomes excessive is to drop non-basic grid point columns from the problem.
However, for the convex case this destroys the convergence preof.

In Step 3 of the algorithm we must perform the single variable lagrangian

minimization of LJ(xJ W) = fd(xd) - );«i gia‘(xJ) over the interval

e - 2 R . L AR v o veememr s do——— e
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x, €C .

X, y »If‘ fj and the gy &re all copvex‘,(and T

< 0) then

' :LJ is convex in vid_ and the minimization can be easily hendled by methods

such as Fibonacci search or perhaps even analytically by setting the

derivative to zero. If fJ end the .gij are concave, then L, is concave

J
Lt
J

‘also and one endpoint of C will be minimal. In the general case where ;

L, is neither convex nor concave, the problem of globally minimizing 'LJ

J

‘over an interval is not trivisl., Most of the existing methods are heuristic

in nature, but if bounds on the derivatives of L, are known, thken a

3
winimax optimal search plan due to Shubert [12] can be used. In any case
these are single variable minimizations over an interval and should be
substantially easier than a direct n-dimensional 'search_for the solution
to NLP.
In most branch and bound algorithms there are tradeoffs between solution
strategy and required storage, and these tradeoffs cffect the efficiency of
the resulting algorithm. This algorithm is no exception. There are two
principal tradeoffs to be considered. The first is related to which sub-
problem on the list should be solved at any given iteration. As the
‘algorithm is written, the “most promising" subproblem (smallest t¥) is
attacked at each iteration. It is easy to imagine situations in which
two distinct equal valued globul minima exist and the algorithm would
spend much time switching back and forth between the respective sub-
problems doing very little work on each at a given iteration. It‘mdght '
be better to do more work on a given subproblem to avoid so many switches
even if this means temporarily working on a subproblem which is not the

most promising.
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The answer to this question depends on huw much trouble it is to. set

up a new subproblem.- This depends on how much information is stored about
. ©  the subproblem and previous solutions to it. Some choices, in decreasing

order of storage requirement are the entire tableau, the previous optimal

- - basis inverse, the previous optimael basis vectors, or just the grid points
which define the problem. There is clearly a tradeoff here between storage

space and solution speed. The decision which is made in any particular

: Lol PP e g e b T et e e o s« £ R s kil RO GE L 0 "
SR G e SN e R el e R % Vs B

case must depend on the computational facilities available and experience

with the class of problems to be solved.

e d o e

VI. AREAS FOR FURTHER STUDY

Hon FI g, Nz

This report has presented the outline for an algorithm which solves
\ separable nonconvex optimization problems using linear subproblems. The i

method has close relationships to several existing optimization methods,

‘{ _ but also some desirable advantages over them. There are several areas

g . which require further investigation:

a.) At the moment the convergence properties of the method
are unknown. An effort to resolve the question is
currently underway.

b.) Since the P, vrestricted master problems ave linear, it

should be possible to exploit special structure in NLP to
& considerable degree. We plan to invgstigate this in
the near future.

c.) Computational behavior of the method on particular classes

of nonconvex problems is of interest,

R b, 5 < B 2

d.) As computational experience accumulates the questions of

branch and bound organization raised in section V should

be resolved.
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e.) For fixed grid problems Beale and Tomlin [7] have shown how
strong bounds can be derived directly from the P§ optimal
';tableau. Possible extension to the varieble grid case should

be investigated. -
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